
Snowflake Authorization 
and Permission Model 
Deep Dive

Snowflake is a popular cloud data warehouse known 
for its ability to handle storage and analytics at scale. 
In the decade since its launch, Snowflake has grown 
into a mature data warehouse with enterprise grade 
security and authorization management functionality.

Snowflake’s robust authorization and permission model 
is central to how a company secures data in the platform. 
It provides a flexible method of authorization management 

utilizing role-based permissions, discretionary privileges, 
and a hierarchical structure for roles, users, and the objects 
they can access. 

This article takes a deep dive into the entities and 
methodologies that comprise Snowflake’s permission 
model and its relative strengths and limitations. 
We’ll also explore common issues and best practices 
for your organization.

Snowflake’s Permission Model

Snowflake uses two approaches for granting permissions: 
discretionary access control (DAC) and role-based access 
control (RBAC). The DAC model simply states that each 
Snowflake object has an owner or creator, and that this 

owner has access to the object and can, in turn, 
grant others access to it. With RBAC, on the other hand, 
access to Snowflake objects is first granted to roles, 
and those roles can then be assigned to individual users.

Terms Used in Snowflake Permissions

In Snowflake’s permission model, some novel concepts 
are used that could be easily misinterpreted without proper 
context. Here are a few of the key concepts you need 
to take into account and their corresponding definition:

• Securable objects: These refer to entities within 
the Snowflake platform that can be secured and 
accessed with the appropriate permission. They include 
databases, warehouses, schemas, tables, and views. 
Access to these objects is granted or denied based on 
a role, which can be assigned to users and other roles.

• Roles: Roles in Snowflake are entities that enable 
users to perform various actions and/or grant 
permissions on objects. Users can be assigned multiple 
roles, allowing them to switch roles during a session 
to execute different actions that might require different 
permission levels. Additionally, roles can be granted 
to other roles, forming a hierarchical structure. 
This hierarchy enables inheritance, where privileges 
are inherited by roles lower in the structure.

https://www.conductorone.com
https://www.snowflake.com/en/


How Does It Work?

• Privileges: For each securable object in Snowflake, 
there is a set of privileges that can be granted to it. 
A privilege refers to a specific level of access granted 
to a securable object. It determines who can access 
and perform operations on the object. Privileges are 
essential for controlling the granularity of access 
allowed, and multiple separate privileges might 
be used to manage different aspects of object access.

• Users: Users in Snowflake are distinct identities that 
represent individuals or machines that interact with 
the platform, access data, and execute various actions. 
Each user is linked to one or more roles, which dictate 
their access level. The privileges assigned to users 
are the combined privileges granted by all the roles 
assigned to them. Users can be associated with both 
built-in roles provided by Snowflake and custom roles 
created for specific purposes.

Snowflake effectively blends the DAC and RBAC 
approaches by utilizing the “ownership” privilege 
for securable objects like databases and assigning them 
to roles. In addition to “ownership,” specific privileges like 
“insert” or “manage” can be individually assigned to other 
roles. These roles (along with their associated privileges) 
can be granted to users or other roles, resulting in an 
inheritance of all the assigned privileges. This hierarchical 
approach creates a robust system of permissions, granting 
varying levels of access to different roles and users.  
 
Snowflake also implements a hierarchical structure 
to organize data effectively through three main types 
of data containers:

• Databases: These serve as top-level containers 
for data and can house multiple schemas. 

• Schemas: Within databases, schemas act as logical 
containers that further organize data. 

• Tables: These objects store the actual data and 
are organized within schemas. 

• Views: These are virtual tables presenting data from 
one or more underlying tables. Views are commonly 
used to simplify complex queries or offer specific 
subsets of data.



Managing Access and Authorization in Snowflake

Snowflake offers an extensive system for managing access 
within your account, ensuring only authorized users and 
applications can access data and perform actions at each 
level of your Snowflake environment.

You can access and modify aspects of your Snowflake 
account permissions through the user interface or with 
explicit SQL commands. For example, you can explore 
the roles your user has access to through the account 
dropdown menu at the left of your Snowflake home page:

You can also do this by executing the following 
command in a Snowflake worksheet:

SHOW ROLES;

This shows the available roles for your user account 
as well as information on the number of roles and 
users with connections to each role:

You can use the GRANT and REVOKE commands to manage 
privileges, giving or denying access to users and roles 
in your Snowflake environment.

The following command creates a new role:

CREATE ROLE samplerole

The following code will grant this new role some 
privileges, though note that you can only grant privileges 
from authorized accounts that already have access 
to the target securable objects:

GRANT CREATE USER ON ACCOUNT TO samplerole;

This allows users with the samplerole role to create 
more users on your account:

Instead of individual privileges, you can also grant a role 
to another role or user to have them inherit a collection 
of privileges:

GRANT ROLE USERADMIN TO ROLE samplerole;



Revoking the privileges you granted uses the same 
command syntax. Replace GRANT with REVOKE and 
TO with FROM:

REVOKE ROLE USERADMIN FROM ROLE samplerole;

You can also assign users to a specific role. For example, 
you can assign samplerole to a new user to have them 
gain the privileges attached to the role:

GRANT ROLE samplerole to USER SNOWFLAKE;

The SNOWFLAKE user here is a default user on your 
account. You can utilize the following code to check all 
users in your Snowflake environment, just like with the 
role statement earlier:

SHOW USERS;

This helps you manage your users and the roles 
assigned to them.

Snowflake allows you to grant privileges at different levels 
of the account hierarchy (i.e. global, database, schema, and 
object level). The global level involves privileges that apply 
across your Snowflake account, such as the ability to create 
users and roles, as you saw earlier. You can also grant 
specific privileges for specific objects, such as databases 
and schemas. 

Here are examples of Snowflake commands at different 
hierarchy levels of privilege:

--database level grant
GRANT USAGE ON DATABASE SAMPLE_DATA to ROLE 
samplerole;

--schema level grant
GRANT USAGE ON SCHEMA SAMPLE_DATA.SAMPLE_
SCHEMA TO ROLE samplerole;

--object(table) level grant
GRANT SELECT ON TABLE SAMPLE_DATA.SAMPLE_
SCHEMA.SAMPLE_TABLE to ROLE samplerole;

When a privilege is granted at a higher object level, it can 
be inherited by lower-level objects within the hierarchy. For 
example, if a privilege is granted at the database level, it 
will apply to all schemas and objects within that database 
unless specifically overridden with different privileges at 
the schema or object level. This hierarchical / inheritance-
driven approach eliminates the need to grant privileges for 
each individual object, making access control and privilege 
management more efficient.

Evaluation of Snowflake’s Permission Model

Snowflake’s permission model is a flexible system for managing access to your data and resources. 
However, it also has significant weaknesses.



Strengths

The following are Snowflake’s main strengths:

• Granularity and flexibility in managing access: 
Snowflake offers intricate control over access 
management, allowing you to tailor permissions 
at varying levels of granularity. You can adjust to the 
individual needs of your users and ensure they have 
the necessary access without unnecessary privileges. 
This helps you align with the principle of least 
privilege, which reduces potential vulnerabilities and 
unauthorized access. 

• Ease of role-based management: The use of roles 
simplifies your access management since they serve 
as a collection of privileges that you can grant to and 
revoke from users as needed. With Snowflake’s role 
inheritance and hierarchy of permissions, you can 
reduce repetitive administrative tasks and effectively 
control access rights.

• Support for complex hierarchical structures: 
Snowflake offers extensive support for complex 
hierarchical structures in data management and 
organizational collaboration. The use of a hierarchical 
permission model with multilevel inheritance 
streamlines and centralizes permission management 
across your data architecture. It does so by reducing 
repetitive and redundant permission assignments 
and relying on the cascade of permissions through 
your hierarchical structure.

Limitations and Challenges

Some of Snowflake’s notable limitations and challenges 
include the following: 

• Lack of fine-grained object-level permissions: 
Snowflake’s permission model does not natively 
support fine-grained access control at the object level. 
For example, it does not allow you to control access to 
specific columns within a table or individual elements 
within an object. That is, different users cannot access 
the same table while only seeing the specific columns 
they have access to. While the Snowflake Enterprise 
Edition does offer dynamic data masking and external 
tokenization, these features are geared more towards 
obfuscating or tokenizing data on the schema level to 
protect sensitive information than fine-grained access 
control at the individual column level.  

• Complexity in managing large numbers of roles and 
users: In large organizations with numerous users 
and required roles, the management of permissions 

can become complex and challenging within 
Snowflake’s unique framework. The more roles and 
users there are, the more difficult it becomes to ensure 
accurate and secure permission assignments. This is 
especially true with mishandled role inheritance, where 
roles are assigned without exploring all the privileges 
attached and how they might be misused. 

• Potential difficulties in auditing and tracking 
permissions: As the number of roles and users grows, 
tracking and auditing permissions can become difficult 
within your Snowflake architecture. Without proper 
monitoring and audit trails, it may be challenging 
to identify and rectify any potential security breaches 
or unauthorized access.

https://www.conductorone.com/guides/guide-seven-principles-least-privilege-access-implementation/
https://www.conductorone.com/guides/guide-seven-principles-least-privilege-access-implementation/
https://docs.snowflake.com/en/user-guide/intro-editions#enterprise-edition
https://docs.snowflake.com/en/user-guide/intro-editions#enterprise-edition
https://docs.snowflake.com/en/user-guide/security-column-ddm-intro
https://docs.snowflake.com/en/user-guide/security-column-ext-token-intro
https://docs.snowflake.com/en/user-guide/security-column-ext-token-intro


Common Problems and Pain Points with Snowflake Access Control

While Snowflake stands out as a mature and effective 
solution, it’s important to acknowledge the existence 
of certain common challenges and pain points within its 
access management. Let’s delve into a closer examination 
of these aspects:

• Overly permissive access: With role inheritance, 
there is a high potential for your system to be overly 
permissive. When roles are granted to other roles, 
privileges may unintentionally propagate to users 
who shouldn’t have them. You need to be vigilant and 
regularly review role assignments to ensure that access 
remains appropriately controlled. 

• Managing access across multiple environments and 
stages: In organizations with multiple development, 
testing, and production environments, managing 
access control consistently across all stages can 
become complex. Different environments may have 
unique requirements, and coordinating access control 
settings across them may be challenging. Proper 
documentation, version control, and automated 

deployment processes are essential in order to maintain 
consistency and avoid misconfigurations within your 
Snowflake environment. 

• Multitenant environment: Snowflake is a multitenant 
cloud service where multiple Snowflake accounts 
share the same underlying infrastructure. This has 
a significant influence on data privacy and security, 
as ensuring data isolation becomes critical in order 
to prevent unauthorized access to sensitive data. 
You should set up strong access controls and 
implement best practices for securing data within 
a multitenant setup. 

• Compliance challenges and regulatory requirements: 
Different industries and regions may have specific 
compliance requirements and regulatory standards 
that your organization must adhere to. Ensuring 
that your access controls meet these requirements 
can be challenging, especially when data spans 
multiple geographic regions or involves data subject 
to various regulations.

Best Practices for Managing Authorization and Permissions in Snowflake

Let’s explore a few best practices for ensuring the security 
of your data and utilizing Snowflake’s authorization and 
permission model effectively:

• Define a clear and logical role hierarchy: Co-opt the 
Snowflake structure in your organization. Design a role 
hierarchy that reflects your organization’s structure 
and access requirements. Create and organize your 
roles based on job functions, teams, or data access 
levels to ensure a logical and scalable hierarchy. Use 
role inheritance to simplify permissions management 
and avoid duplication of privileges. 

• Regularly review and audit permissions: It’s important 
to routinely monitor and review your permissions and 
security. This helps you better identify and rectify any 
permissive access cases and minimize your security 
risks. Tools like ConductorOne can help you manage 
and audit your permissions over your organization’s 
infrastructure. ConductorOne provides you with a clear 
overview of permissions across roles and objects, 
helping you maintain a secure infrastructure. 

• Utilize the principle of least privilege: By following 
the principle of least privilege, you only grant the 
minimum security privileges required at any point 
in time for a certain task. This reduces unnecessary 
or excessive permissions within your organization 
and minimizes the risk of data breaches or unauthorized 
access. ConductorOne is built around this principle, 
with “just-in-time” and short-lived access control 
to resources to reduce risk. 

• Leverage Snowflake’s built-in security features: 
Snowflake offers various security features that can 
enhance access control and data protection, such 
as end-to-end data encryption at rest and in transit, 
multifactor authentication, and secure data sharing. 
You can leverage these features to make your 
architecture secure and mitigate unauthorized access.

https://www.conductorone.com


Conclusion

This article introduced the Snowflake environment, 
its authorization and permission model, and its features. 
You also explored its strengths and weaknesses, 
common problems, and best practices. 
 
ConductorOne is an identity security solution for the 
modern workforce. It helps you simplify and automate 

your authorization workflows, implement JIT access 
control, centralize permissions management, and all the 
authorization best practices we discussed in this article, 
all while providing a seamless user experience. 

Want to learn more about our identity 
security platform for modern workforces?

team@conductorone.com

GET A DEMO

https://www.conductorone.com

