
Using SCIM provides the same benefits that a standard
for single sign-on (SSO) provides: interoperability
across different IdPs, guidance on exactly what needs
to be built, existing examples of how to build the
implementation, existing tooling, easy integration with
most IdPs, and so on.

In this article, you’ll learn what SCIM is, why you should
use it, common workflows, real-world practical tips,
and a little bit about the future of SCIM.

SCIM Provisioning
Explained (+ Benefits
and Limitations)

The System for Cross-domain Identity Management (SCIM)
is an open standard that supports synchronization of user
provisioning from one system to another. SCIM enables the
exchange of identity data between cloud services and
identity providers (IdPs), allowing companies to automate
user provisioning across these systems.

For organizations with hundreds or thousands of users, it
doesn’t make sense to manually add, update, and remove
users and security groups from all the different SaaS apps
they have in use.

What Are the Benefits of SCIM
Provisioning?

Before learning the specifics of SCIM, you should know
how it can help your organization and customers.

Scalable User Management

Manually provisioning user accounts across many different
pieces of software quickly becomes a huge bottleneck for
system administrators. SCIM saves time and effort by
automating the management of users between the identity
provider (IdP) and destination applications.

For SaaS or B2B organizations, using SCIM means that
many different IdPs will be compatible with your
system’s user provisioning API. Larger enterprise
customers that use various IdPs also often require this
compatibility.

https://www.conductorone.com
https://www.conductorone.com/glossary/saml-vs-scim/
https://www.conductorone.com/glossary/saml-vs-scim/
https://www.conductorone.com/glossary/provisioning-deprovisioning/
https://www.conductorone.com/glossary/what-is-an-identity-provider/
https://www.conductorone.com/glossary/what-is-single-sign-on-sso/

Enhanced Security and Compliance

Normally, IT administrators have the ability to manage user
data and permissions across different systems and services
that the organization uses. Some organizations may not like
the idea that their IT administrators have full access to
provision, modify, and delete any user whenever they want.

Full User Provisioning Solution

Before SCIM gained popularity and wider use,
organizations would often use SAML just-in-time (JIT)
provisioning to provision users. This is a great starting
point.

However, with SAML JIT provisioning, a user has to
sign in to your system before changes from the IDP are
synchronized. With SCIM, changes in one system will

How Does SCIM Provisioning Work?

SCIM is an HTTP API standard that defines various HTTP
endpoints to synchronize identities between systems.
There are two resources that are available to interact with:
User and Group. Each resource has a given schema.

SCIM Schema

The schema defines the types of attributes that are
expected and required when implementing your own SCIM
API. Here, you’ll define email addresses, which tenant the
user belongs to, the person’s name, and so on. Most SCIM
implementations keep the schema simple, but the standard
includes many optional attributes.

For example, here are Amazon’s required attributes.

For SCIM synchronization to work, every user must have a
first name, last name, username, and display name value
specified. If any of these values are missing from a user, that
user will not be provisioned.

With automated SCIM-based user provisioning, you can
reduce the number of IT personnel needed to handle user
management. This enhances security by minimizing human
error and enforcing tighter controls on IT administrator
access.

propagate to other systems automatically. For example,
deactivating a user in your IDP will propagate immediately
to your SCIM-enabled application.

SCIM is a full solution for user provisioning that gives
you tighter security, a better user experience, and full
provisioning functionality.

The SCIM standard as a whole has two core parts,
consisting of a schema and protocol.

SCIM defines many attributes—here are some of the
important attributes you should know about:

•	 id: A unique identifier that your system generates
for every specific SCIM resource. The value must be
unique across all SCIM resources in your system
(eg across all tenants).

•	 externalId: An identifier that comes from the IDP or
source system. Usually, this is a SAML identifier or some
IDP-specific value. This is optional but can help to link
your SCIM users with users who sign in to your system
via SSO.

https://www.rfc-editor.org/rfc/rfc7643
https://www.rfc-editor.org/rfc/rfc7644
https://docs.aws.amazon.com/singlesignon/latest/userguide/provision-automatically.html#auto-provisioning-considerations
https://www.conductorone.com/glossary/saml-vs-scim/
https://www.conductorone.com/solutions/jit-access/

•	 userName: Your system’s unique identifier for the
given user. This is usually an email address, username,
or an integer or UUID.

•	 meta: An object holding various metadata attributes
about the resource.

•	 schemas: SCIM has different schemas that define

various attributes. For example, there’s a core user
schema, an enterprise user schema extension
that defines even more attributes for users, and
a core group schema.

Technically, there are more schemas and ways to add
your own. Check out the standard for more on these.

SCIM Protocol

The SCIM protocol defines the various functions
(as HTTP endpoints) that you need to implement.

Because the SCIM protocol specification is fairly long,
wordy, and covers mostly optional SCIM functionality, it’s
not the best place to begin learning about how the SCIM
protocol works. Instead, you’ll start by looking at Amazon’s
implementation of SCIM.

This is an excellent starting point because Amazon’s
documentation is concise yet sufficient. Its implementation
of SCIM covers only the necessary parts of the standard
and nothing more. It's a great real-world implementation
example instead of a theoretical blueprint.

Here are all the actions available via its SCIM
implementation:

•	 CreateUser

•	 GetUser

•	 ListUsers

•	 DeleteUser

•	 PutUser

•	 PatchUser

•	 CreateGroup

•	 GetGroup

•	 ListGroups

•	 DeleteGroup

•	 PatchGroup

•	 ServiceProviderConfig

Note that PutUser and PatchUser can be used to update
the active attribute to activate or deactivate a user. This is
different from the DeleteUser endpoint. See the standard
for more.

https://www.rfc-editor.org/rfc/rfc7643#section-4.1
https://www.rfc-editor.org/rfc/rfc7643#section-4.1
https://www.rfc-editor.org/rfc/rfc7643#section-4.3
https://www.rfc-editor.org/rfc/rfc7643#section-4.2
https://www.rfc-editor.org/rfc/rfc7643
https://docs.aws.amazon.com/singlesignon/latest/developerguide/supported-apis.html
https://docs.aws.amazon.com/singlesignon/latest/developerguide/supported-apis.html
https://www.rfc-editor.org/rfc/rfc7644#section-3.6
https://www.rfc-editor.org/rfc/rfc7644#section-3.6

CreateUser SCIM Endpoint

Here’s what a basic request to the CreateUser endpoint might look like:

{
 “externalId”: “701984”,
 “userName”: “bjensen”,
 “name”: {
 “formatted”: “Ms. Barbara J Jensen, III”,
 “familyName”: “Jensen”,
 “givenName”: “Barbara”,
 “middleName”: “Jane”,
 “honorificPrefix”: “Ms.”,
 “honorificSuffix”: “III”
 },
 “displayName”: “Babs Jensen”,
 “emails”: [
 {
 “value”: “bjensen@example.com”,
 “type”: “work”,
 “primary”: true
 }
],
 “active”: true
}

Here’s a sample of a successful response to that request:

{
 “id”: “9067729b3d-94f1e0b3-c394-48d5-8ab1-2c122a167074”,
 “externalId”: “701984”,
 “meta”: {
 “resourceType”: “User”,
 “created”: “2020-03-31T02:36:15Z”,
 “lastModified”: “2020-03-31T02:36:15Z”
 },
 “schemas”: [
 “urn:ietf:params:scim:schemas:core:2.0:User”,
 “urn:ietf:params:scim:schemas:extension:enterprise:2.0:User”
],
 “userName”: “bjensen”,
 “name”: {
 “formatted”: “Ms. Barbara J Jensen, III”,
 “familyName”: “Jensen”,
 “givenName”: “Barbara”,
 “middleName”: “Jane”,
 “honorificPrefix”: “Ms.”,
 “honorificSuffix”: “III”
 },
 “displayName”: “Babs Jensen”,
 “active”: true,
 “emails”: [
 {
 “value”: “bjensen@example.com”,
 “type”: “work”,
 “primary”: true
 }
]
}

Notice that the response mostly echoes the attributes sent in the request. However, there are a few
new attributes that the destination system generated: `id`, `meta`, and `schemas`.

ServiceProviderConfig SCIM Endpoint

The ServiceProviderConfig API endpoint is how an IDP discovers what SCIM functionality your
API provides. As there are many optional pieces to SCIM, an IDP may change how it interacts with
your API depending on what your API supports. For example, if your API supports HTTP PATCH
requests, then the IDP may choose not to use HTTP PUT at all. Some IDPs may ignore this altogether.

Here is a sample HTTP response from Amazon’s documentation that lists other supported and
unsupported optional features, including HTTP PATCH operations, bulk operations, the ability
to change passwords, and filtering:

{
 “schemas”: [
 “urn:ietf:params:scim:schemas:core:2.0:ServiceProviderConfig”
],
 “documentationUri”: “https://docs.aws.amazon.com/singlesignon/ latest/
userguide/manage-your-identity-source-idp.html”,
 “authenticationSchemes”: [
 {
 “type”: “oauthbearertoken”,
 “name”: “OAuth Bearer Token”,
 “description”: “Authentication scheme using the OAuth Bearer Token
Standard”,
 “specUri”: “https://www.rfc-editor.org/info/rfc6750”,
 “documentationUri”: “https://docs.aws.amazon.com/singlesignon/
latest/userguide/provision-automatically.html”,
 “primary”: true
 }
],
 “patch”: {
 “supported”: true
 },
 “bulk”: {
 “supported”: false,
 “maxOperations”: 1,
 “maxPayloadSize”: 1048576
 },
 “filter”: {
 “supported”: true,
 “maxResults”: 50
 },
 “changePassword”: {
 “supported”: false
 },
 “sort”: {
 “supported”: false
 },
 “etag”: {
 “supported”: false
 }
}

Basic Workflow

While each IDP has its own SCIM lifecycle that depends
on the specific implementation, the following is the basic
lifecycle of a user that is provisioned via SCIM:

	

	

	

• The IDP checks if the user exists already.

o If the user does not exist, the IDP sends an
HTTP POST request to /scim/Users

o If the user exists, the IDP will update your
system by sending an HTTP PATCH or PUT
request to /scim/Users .

• If the user is changed in the IDP, it will send an HTTP
PATCH or PUT request to /scim/Users .

• If the user is deleted in the IDP, it will send an HTTP
DELETE request to /scim/Users .

For an example of a real IDP’s lifecycle, take a look at the
Microsoft AD SCIM provisioning lifecycle. There are other
factors involved, such as error handling, quarantining failed
synchronizations, lifecycle for user creation, lifecycle for
updating a user, lifecycle for deletion, and hard vs. soft
delete (eg deactivation vs. full removal).

Limitations and Problems with
SCIM Provisioning
Using a standard for user provisioning has many benefits,
but SCIM isn’t perfect, either.

A Loose Standard

SCIM offers different ways to implement certain operations,
resulting in IDPs having different requirements for what
your SCIM API needs to support in order to work with them.
Ironically, this is what a standard is supposed to avoid!

For example, when updating a User and Group , some
IDPs support HTTP PATCH, while others may only support

HTTP UPDATE. Okta uses HTTP PATCH only for user
activation/deactivation and password sync. According
to the Okta documentation, “All other updates to User
objects are handled through a PUT method request.”
Microsoft Entra ID (formerly Azure Active Directory), on the
other hand, doesn’t support PUT at all and only supports
updates via HTTP PATCH.

https://learn.microsoft.com/en-us/azure/active-directory/app-provisioning/how-provisioning-works#provisioning-cycles-initial-and-incremental
https://developer.okta.com/docs/reference/scim/scim-20/#update-a-specific-user-patch
https://learn.microsoft.com/en-us/azure/active-directory/app-provisioning/use-scim-to-provision-users-and-groups#request-4
https://learn.microsoft.com/en-us/azure/active-directory/app-provisioning/use-scim-to-provision-users-and-groups#request-4

Support for Any Architecture | Deep Dive into ConductorOne Integrations 00

has special flags that need to be included with HTTP
requests. These flags can change how SCIM behaves and
are extra pieces of information you must know about.

Either they return an empty array all of the time or don’t
return the attribute at all.

For example, the FastFed profile (which you’ll learn about
later) mandates that the IDP calling your SCIM API must
explicitly request the exclusion of this attribute because
it’s so problematic.

Likewise, Amazon’s SCIM API just never returns the attribute.

Nonconformance

Sometimes, an IDP’s first implementation didn’t follow
the SCIM standard. For example, Microsoft Entra has
cases where it didn’t previously conform to SCIM and

Group Members Array

The members attribute in the Group resource can cause
significant problems. Your SCIM API defines the members
attribute as a JSON array that lists all the users who are
members of a given security group. As groups can have
many members (possibly thousands) and JSON attributes
cannot be paginated, the HTTP responses for large
groups can become massive and slow down the API’s
performance.

Most SCIM APIs have handled this by setting a hard
limit on how many records they return in that attribute.

User Invitation Process

The SCIM standard mandates that the CreateUser
request must return the details of a successful user that
was added to the destination system.

When the service provider successfully creates the new
resource, an HTTP response SHALL be returned with HTTP
status code 201 (Created).

API to sync all users, but some users in your system have
not completed the invitation process yet?

This scenario also applies to systems where users are
provisioned via asynchronous background processing
in the destination system. Does the SCIM API just return
a fake user since it doesn’t exist yet?

There’s no guidance in the SCIM standard, and this is a
blind spot for such a common use case. For an example of
how to think about this scenario, take a look at how GitHub
handles it.

However, many applications have a user provisioning
process whereby a user is first invited via their email
address and then has to verify that invitation before their
account is created.

Do you return a fake user to the IDP on the CreateUser
response? What happens when the IDP queries your SCIM

Security Best Practices for SCIM
Provisioning

A SCIM API is like any other HTTP API. Bad actors can and
will attempt to find vulnerabilities in your API and attempt
to attack your system. Therefore, standard HTTP API
security concerns also apply to SCIM APIs:	

	

	

• Are you defending against denial-of-service (DoS)
attacks?

• Is your authentication mechanism robust and secure?

• Are you prone to man-in-the-middle attacks?

https://learn.microsoft.com/en-us/azure/active-directory/app-provisioning/application-provisioning-config-problem-scim-compatibility
https://learn.microsoft.com/en-us/azure/active-directory/app-provisioning/application-provisioning-config-problem-scim-compatibility
https://openid.net/specs/fastfed-scim-1_0-02.html#rfc.section.4.3.5
https://docs.aws.amazon.com/singlesignon/latest/developerguide/limitations.html
https://www.rfc-editor.org/rfc/rfc7644#section-3.3
https://www.rfc-editor.org/rfc/rfc7644#section-3.3
https://docs.github.com/en/enterprise-cloud@latest/rest/scim/scim?apiVersion=2022-11-28#provision-and-invite-a-scim-user
https://docs.github.com/en/enterprise-cloud@latest/rest/scim/scim?apiVersion=2022-11-28#provision-and-invite-a-scim-user

Authentication

With SCIM, the most likely choice for authentication is a
bearer token. In fact, most IDPs only give you this
option.

Standard API token security best practices apply here:
•	 Rotate your tokens

•	 Make sure your tokens expire

•	 Ensure your SCIM token only has authorization
to access SCIM functionality and no other APIs or
functionality in your system (principle of least privilege)

•	 Limit who can access and generate SCIM tokens

•	 Consider using a JIT access request tool to limit access
to those who can generate SCIM tokens even further

Other Security Considerations

There are still more security hardening measures to be
considered. For example, OWASP has published a great
guide on REST API security that you can refer to for more
information. Here are a few other important security
measures to consider for your SCIM APIs:

•	 Enforce HTTPS for your entire SCIM API

•	 Implement some form of rate limiting to defend against
DoS attacks or aggressive IDPs

•	 Consider not synchronizing passwords via SCIM

•	 Some IDPs have the option to push passwords to
other systems. Even if your API is using HTTPS and
has other protections, is there another way to do
what you want? Chances are your customers are
using SSO anyway!

The Future of SCIM

SCIM is a relatively young standard. Because of this, the
standard is open to revision through real-world usage
The organization that manages the SCIM specification,
the Internet Engineering Task Force, has documented
in RFC 7642 a first round of learnings that detail common
SCIM workflows.

There is also a larger specification being worked on that
includes various authentication and federation-related
standards called FastFed. Part of this standard includes
guidance on an opinionated way to implement SCIM.

However, a consequence of SCIM's flexibility is that two
providers may find themselves incompatible despite
sharing the same protocols.

To deliver the simplified experience that is the goal of
FastFed, it is important that two FastFed-enabled
providers have confidence that they can interoperate when
sharing the same protocols.

In other words, the FastFed SCIM profile is a boiled-down,
opinionated approach to implementing SCIM that makes
it closer to a true standard. It also defines overarching
standards so that various tools like SCIM and SSO can
reuse the same authentication and access management
functionalities.

Amazon’s SCIM implementation, discussed in this article,
serves as an excellent foundation and is based on the
FastFed profile.

https://learn.microsoft.com/en-us/azure/active-directory/app-provisioning/use-scim-to-provision-users-and-groups#getting-started
https://docs.aws.amazon.com/singlesignon/latest/userguide/provision-automatically.html#rotate-token
https://docs.aws.amazon.com/singlesignon/latest/userguide/provision-automatically.html#access-token-expiry
https://www.conductorone.com/glossary/least-privilege/
https://www.conductorone.com/solutions/jit-access/
https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html
https://developer.okta.com/docs/reference/scim/scim-20/#determine-if-the-user-already-existshttps://developer.okta.com/docs/reference/scim/scim-20/#determine-if-the-user-already-exists
https://www.rfc-editor.org/rfc/rfc7642
https://openid.net/wg/fastfed/
https://openid.net/specs/fastfed-scim-1_0-02.html
https://www.conductorone.com/glossary/authentication-vs-authorization/

Want to learn more about our identity
security platform for modern workforces?

team@conductorone.com

GET A DEMO

Conclusion

In this guide, you learned all about SCIM and how it can
help guide you in building identity synchronization. By
using a common standard, your SCIM API will be
compatible with many different IDPs. Although SCIM has
some limitations, you can avoid most of them by following
solid guidance through either Amazon’s SCIM API
documentation or the FastFed SCIM profile.

Solid and secure authentication is critical for all HTTP APIs.
ConductorOne can help you secure and limit access to your
SCIM bearer tokens by limiting who can generate tokens

and who can configure your IDP’s configuration.
By implementing JIT access through ConductorOne,
you can harden your security posture around token
management and IDP configuration.

By using SCIM and robust security controls and tooling
like ConductorOne, you’ll be able to build secure user
provisioning that delivers massive value to your own
organization and your customers.

https://docs.aws.amazon.com/singlesignon/latest/developerguide/what-is-scim.html
https://openid.net/specs/fastfed-scim-1_0-02.html
http://ConductorOne
https://www.conductorone.com/products/access-requests/

