
conductorone.com 1Everything You Wanted to Know about GitHub Access Control

Everything You
Wanted to Know
about GitHub
Access Control

GitHub is the largest and most popular software development platform, providing services from
Git version control to bug tracking, CI/CD, and task management. With over 100 million users
developing all kinds of software, proper access control on all levels is crucial to the maintenance,
security, and integrity of all the code on the platform. That’s why GitHub provides an extensive
system to manage access control across repositories, teams, and organizations of all sizes.

This article explores everything you need to know about GitHub access control in order
to properly manage your GitHub accounts and repositories on all levels.

https://www.conductorone.com/
https://www.conductorone.com/
https://www.conductorone.com/
https://github.com/

conductorone.com 2Everything You Wanted to Know about GitHub Access Control

Understanding GitHub’s Authorization/Permission Model
GitHub uses a role-based access control (RBAC) model. With this model, to perform any action
on GitHub, a user must have appropriate permissions that grant them the necessary access to
a particular resource at the given level. Permissions are collectively assigned to users as roles:

There are different roles for different types of GitHub accounts. For a repository owned by
a personal account, the only two available roles are owner and collaborator:
→ An owner has complete control over the repository, with the ability to perform dangerous,

destructive actions (like archiving or deleting the repository) and add collaborators.

→ A collaborator has read/write access to the repository’s content, with the ability to manage
issues, merge pull requests, and create releases, for example.

If you need more granular control, you have to create a GitHub organization, where you’ll have
access to more organization- and repository-level roles.

At the organizational level, the following roles are available:
→ An owner has complete control over the organization, including all of its repositories and assigned

users. To ensure the organization’s continuity, it’s recommended that it have at least two owners.

→ A member is the base, non-administrative role with default access to repos and projects;
its permissions are configurable.

→ A moderator has extended moderation-related permissions in addition to base member
role permissions, like blocking non-member users, managing interaction limits, and hiding
disruptive comments in public repos.

→ The billing manager role can manage the organization’s billing settings, such as the current
plan, sponsorships, payment details, or history.

→ The GitHub App manager role can manage some or all GitHub Apps registered by the
organization on top of the basic, required member role’s permissions.

→ The outside collaborator role allows limited access to selected organization repositories.
It has to be further controlled with repository-level permissions.

https://www.conductorone.com/
https://www.conductorone.com/
https://www.conductorone.com/glossary/what-is-role-based-access-control/
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-personal-account-settings/permission-levels-for-a-personal-account-repository#owner-access-for-a-repository-owned-by-a-personal-account
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-personal-account-settings/permission-levels-for-a-personal-account-repository#collaborator-access-for-a-repository-owned-by-a-personal-account
https://docs.github.com/en/organizations/managing-peoples-access-to-your-organization-with-roles/roles-in-an-organization#organization-owners\
https://docs.github.com/en/organizations/managing-peoples-access-to-your-organization-with-roles/roles-in-an-organization#organization-members
https://docs.github.com/en/organizations/managing-peoples-access-to-your-organization-with-roles/roles-in-an-organization#organization-moderators
https://docs.github.com/en/organizations/managing-peoples-access-to-your-organization-with-roles/roles-in-an-organization#billing-managers
https://docs.github.com/en/organizations/managing-peoples-access-to-your-organization-with-roles/roles-in-an-organization#github-app-managers
https://docs.github.com/en/organizations/managing-peoples-access-to-your-organization-with-roles/roles-in-an-organization#github-app-managers

conductorone.com 3Everything You Wanted to Know about GitHub Access Control

You can also configure the permissions of individual members, outside collaborators, and entire
teams in relation to selected repositories by assigning them one of the repository-level roles:
→ Read provides read-only access to the repo’s content and related resources (issues, pull

requests, and so on).

→ Triage has additional permissions to better proactively manage issues, pull requests, and more.

→ Write has further write permissions to the repo’s content to perform actions such as merging pull
requests or creating releases.

→ Maintain has broad access to the repository, with the exception of dangerous or destructive actions.

→ Admin has full access to the repository, including permissions to change security settings or delete
the repository.

Managing Authorization and Access Control in GitHub
Organizations
If you have the necessary permissions, you can manage the roles of other users in the
dedicated settings panels of the entire organization or individual repo. If you want to do this
effectively, you’ll need a strong understanding of GitHub’s access control system and its UI
dashboard.

General User and Team Management
Managing your GitHub organization begins with inviting members. From the main organization
dashboard, go to the People tab and click Invite member. Then, from the respective dropdown
menu, you can convert any member to an outside collaborator, further manage their access to
select repositories, or completely remove them from the organization:

https://www.conductorone.com/
https://www.conductorone.com/
https://docs.github.com/en/organizations/managing-user-access-to-your-organizations-repositories/repository-roles-for-an-organization#permissions-for-each-role

conductorone.com 4Everything You Wanted to Know about GitHub Access Control

In addition to managing members individually, you can also assign them to teams and manage
their repository access and permissions collectively.

To create a new team, head to the Teams tab and click New team, then fill in the relevant details:

Once you create a team, you’ll be redirected to its dedicated dashboard:

https://www.conductorone.com/
https://www.conductorone.com/

conductorone.com 5Everything You Wanted to Know about GitHub Access Control

From here, you can manage the team, including its details, members, and repository-level roles.
You can add a member to the team by clicking Add a member. This can be someone who is already
an organization member or someone you are inviting to become a member of both the team and the
entire organization.

In the Teams tab, you can also add an entire child team by clicking Add a team. This can be
used to better organize and manage access control:

You can assign a repository-level role to a team to provide repository access. To do this,
go to the Repositories panel and click Add repository:

https://www.conductorone.com/
https://www.conductorone.com/

conductorone.com 6Everything You Wanted to Know about GitHub Access Control

For each repository you add, you’ll have to choose a role to assign to the team.

Organization-Level Access Control
The member role serves as the base role for the organization’s users. GitHub provides extra
organization-level tools to enhance control over the privileges associated with this role.

You can configure various options for the member role in the organization’s Settings tab under
the Member privileges section. Most importantly, this includes base permissions, meaning the
level of access each member will possess across all repositories. Additionally, you can customize
access to various actions within repositories, projects, issues, and more:

You can also assign other organization-level roles from the Settings tab.

https://www.conductorone.com/
https://www.conductorone.com/

conductorone.com 7Everything You Wanted to Know about GitHub Access Control

To assign billing managers, go to the Billing and plans > Billing managers section and click Invite:

You can assign existing users or entire teams as moderators in the Moderation > Moderators section:

https://www.conductorone.com/
https://www.conductorone.com/

conductorone.com 8Everything You Wanted to Know about GitHub Access Control

Lastly, you can assign the GitHub App manager role to existing organization members
from the Developer Settings > GitHub Apps > Management section:

Among the different settings for managing your organization, the Repository roles section is particularly
useful. It lets you see all the predefined repository-level roles. If you have a GitHub Enterprise account,
it also lets you create custom repository roles for even more fine-grained control:

https://www.conductorone.com/
https://www.conductorone.com/
https://github.com/enterprise

conductorone.com 9Everything You Wanted to Know about GitHub Access Control

Custom repository roles aren’t the only advantage of the GitHub Enterprise plan when it comes
to access control. The plan also gives you access to more authentication security settings, including
SAML Single Sign-On (SSO), custom enterprise policies, and an IP allow list—all certified for compliance.

Repository-Level Access Control
In addition to configuring repository-level roles through settings for members or teams, you can
also do this at the level of a given repository:

https://www.conductorone.com/
https://www.conductorone.com/

conductorone.com 10Everything You Wanted to Know about GitHub Access Control

In the repository dashboard, under Settings > Collaborators and teams, you can use the Add people
and Add teams buttons and manage repository-level roles accordingly for members and outside
collaborators or teams:

This provides you with an alternative way to manage access control, reassuring you that the
changes you make affect only the selected repository.

Best Practices for Managing GitHub Access Control
When working with the access control features available on GitHub, you should consider the
following best practices to ensure that your projects are secure and your organizational workflow
is running efficiently.

Follow the Principle of Least Privilege

The principle of least privilege is a security best practice that recommends that users be granted
the minimum level of access required to perform their tasks. This ensures that users do not have
access to resources they don’t need, reducing the risk of accidental or malicious misuse of resources.

You should consider administering roles and permissions at the team level rather than at the individual
level, which makes implementing the principle of least privilege easier. For example, you can create
a team for developers and assign them the “write” access level for the repository. Similarly, you can
create a team for testers and assign them the “read” access level for the repository. This ensures that
developers have the ability to push changes to the repository, while testers can only view the repository
and clone it to their local machine.

https://www.conductorone.com/
https://www.conductorone.com/
https://www.conductorone.com/glossary/least-privilege/

conductorone.com 11Everything You Wanted to Know about GitHub Access Control

Use Proper Roles for Users

You should assign the appropriate roles to users based on their responsibilities. Organizations
generally have well-defined teams with specific responsibilities. You can reflect this structure
by creating teams on GitHub and assigning the same roles and permissions to them as they have
in the organization. For example, architects can be assigned the “maintain” access level for the
repository and the “owner” role for the organization, while project leads can be assigned “triage”
access to their respective repositories and the “member” role for the organization.

Set Repository Visibility and Access Control

You need to choose the right visibility settings when creating your repository, as this determines
who can access it. GitHub provides three different visibility settings for repositories: public, private,
and internal. The internal visibility setting is only available for organization accounts.

 → Public: Public repositories are visible to everyone on the internet. Anyone can view the repository
and clone it to their local machine. However, only users with the appropriate roles and permissions
can push changes to the repository.

 → Private: Private repositories are only visible to the account owner, users the owner shares access
with, and users with the appropriate roles and permissions in the organization.

 → Internal: Internal repositories are visible to all members of the organization. An internal repo
is not visible to users outside the organization. However, users outside the organization can
be granted access to the repository by assigning them the outside collaborator role.

You should consider the sensitivity of your project when choosing the visibility setting for your repository.
For example, if you are working on an open source project, you should choose the public visibility setting.
On the other hand, if you are working on a proprietary project, you should choose the private or internal
visibility setting.

Use Branch Protection Rules

Branch protection rules allow you to control the actions that can be performed on a branch. You can
configure branch protection rules to prevent users from pushing changes directly to the “main” branch.
You can also configure policies to ensure that any merge to the “main” branch is done via a pull request
and that the pull request is approved by a reviewer before it can be merged.

Handle Credentials with Secrets

You should avoid hard-coding credentials in your codebase, as it can lead to the accidental exposure
of sensitive information. Instead, you can use secrets, which are encrypted environment variables
specifically designed to securely store and manage credentials within your GitHub workflows. Using
secrets ensures that sensitive credentials remain protected and won’t be exposed to unauthorized users.

It’s good practice to store secrets at the organization level and use access policies to control who can
access them. This ensures that secrets are not duplicated between repositories and are centrally managed.

https://www.conductorone.com/
https://www.conductorone.com/
https://docs.github.com/en/actions/reference/encrypted-secrets

conductorone.com 12Everything You Wanted to Know about GitHub Access Control

Remove Inactive Users

You should regularly audit your team list and remove users who are no longer active or part of the project
to maintain security and clarity in the team structure. You can use the audit log to identify inactive users
and remove them from your team.

Strengths of GitHub’s Authorization Model
Having a good understanding of GitHub’s access control model, its implementation, and its
usage allows you to better understand its strengths and limitations.

Having granular controls and the ability to configure individual user access to selected repositories
allows you to manage an organization at any scale. GitHub’s RBAC model, its built-in roles, and its
implementation of teams and sub-teams provide enough control and flexibility so that you can model
the access control settings after the way your organization is structured.

Large organizations with hundreds of members can use teams and sub-teams to manage general access
at the team level. Individual teams can then manage their own members, allowing for easier control
within a focused scope. On the other hand, smaller organizations can manage individual members’
roles directly and take advantage of the “outside collaborator” role for onboarding new or temporary
members.

Further access control configuration at the repository level facilitates collaboration and various
repository-bound workflows that are available on GitHub. From managing pull requests and issues
to using GitHub projects or CI/CD, proper access control makes sure only trusted members have
access to dangerous or destructive actions.

Limitations and Challenges of GitHub’s Authorization
Permission Model
That said, GitHub’s model does have its limitations.

GitHub’s RBAC implementation provides many tools that allow you to have granular control over
the roles of every member of the organization. However, with such flexibility comes increased
complexity, which can quickly become a challenge, especially when managing a large organization.
From the organization-level roles, through teams and sub-teams, down to individual members’
permissions to select repositories, having to manage and delegate tasks through all the levels
can quickly get out of hand.

While complexity may only affect large organizations, the limitations of GitHub’s RBAC implementation
can be experienced at any scale. Even though GitHub has a concept of permissions, you’re limited to
assigning predefined roles for the most part. The few configuration options GitHub provides may not be

https://www.conductorone.com/
https://www.conductorone.com/
https://docs.github.com/en/organizations/keeping-your-organization-secure/reviewing-the-audit-log-for-your-organization

conductorone.com 13Everything You Wanted to Know about GitHub Access Control

Want to learn more about our identity
security platform for modern workforces?

| team@conductorone.com

Get a demo

enough in case you need to create custom roles (for example, for contractors or community managers)
to accurately model access control in your organization. Such a level of control is reserved only for
GitHub Enterprise accounts.

However, custom roles aren’t the only advantage of GitHub Enterprise Cloud. If your organization has
to adhere to special compliance and security standards, no account type other than Enterprise can fit
your needs. This vastly limits your options and can be especially problematic for smaller, specialized
organizations, which must adhere to various standards but have little need for other features of GitHub
Enterprise. Still, in such cases, Enterprise Cloud, being certified for compliance (with annual SOC 1
Type 2 and SOC 2 Type 2 reports) and providing extended authentication security features (like SAML
SSO), is your only option.

Conclusion
You should now know how GitHub’s RBAC model works and how you can make the best use
of it in your GitHub organization.

Implementing role-based access control as advanced as GitHub’s might seem challenging,
but it doesn’t have to be. With ConductorOne, an identity security automation platform,
you can easily add modern, user-focused access controls with streamlined self-service
requests and just-in-time provisioning to any app.

ConductorOne has a feature-rich GitHub integration that enables you to provision just-in-time
access to your organization’s repositories. Using the integration, you can easily manage user
access to your repositories using the same intuitive UI that you use for managing access to
other resources within your organization. Take a tour or book a demo to learn more.

https://www.conductorone.com/
https://www.conductorone.com/
https://docs.github.com/en/enterprise-cloud@latest/organizations/managing-user-access-to-your-organizations-repositories/managing-repository-roles/about-custom-repository-roles#custom-role-examples
https://www.conductorone.com/
https://www.conductorone.com/glossary/what-is-just-in-time-access/
https://www.conductorone.com/docs/product/integrations/github-v2/
https://www.conductorone.com/product-tour/
https://www.conductorone.com/lp/request-demo/

