
GitHub is the largest and most popular software 
development platform, providing services from Git version 
control to bug tracking, CI/CD, and task management. 
With over 100 million users developing all kinds of 
software, proper access control on all levels is crucial 
to the maintenance, security, and integrity of all the code 
on the platform. That’s why GitHub provides an extensive 

system to manage access control across repositories, 
teams, and organizations of all sizes.

This article explores everything you need to know 
about GitHub access control in order to properly manage 
your GitHub accounts and repositories on all levels.

Understanding GitHub’s Authorization/Permission Model

GitHub uses a role-based access control (RBAC) model. 
With this model, to perform any action on GitHub, a user 
must have appropriate permissions that grant them the 
necessary access to a particular resource at the given level. 
Permissions are collectively assigned to users as roles:

Everything You Wanted 
to Know about GitHub 
Access Control

There are different roles for different types of GitHub 
accounts. For a repository owned by a personal account, 
the only two available roles are owner and collaborator:

• An owner has complete control over the repository, 
with the ability to perform dangerous, destructive 
actions (like archiving or deleting the repository) 
and add collaborators.

• A collaborator has read/write access to the repository’s 
content, with the ability to manage issues, merge pull 
requests, and create releases, for example.

If you need more granular control, you have to create 
a GitHub organization, where you’ll have access to more 
organization- and repository-level roles.

At the organizational level, the following roles are available:

• An owner has complete control over the organization, 
including all of its repositories and assigned users. 
To ensure the organization’s continuity, it’s 
recommended that it have at least two owners.

• A member is the base, non-administrative role with 
default access to repos and projects; its permissions 
are configurable.

• A moderator has extended moderation-related 
permissions in addition to base member role 
permissions, like blocking non-member users, 
managing interaction limits, and hiding disruptive 
comments in public repos.

• The billing manager role can manage the organization’s 
billing settings, such as the current plan, sponsorships, 
payment details, or history.

https://github.com/
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-user-account-settings/permission-levels-for-a-personal-account-repository#owner-access-for-a-repository-owned-by-a-personal-account
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-user-account-settings/permission-levels-for-a-personal-account-repository#collaborator-access-for-a-repository-owned-by-a-personal-account
https://docs.github.com/en/organizations/managing-peoples-access-to-your-organization-with-roles/roles-in-an-organization#organization-owners
https://docs.github.com/en/organizations/managing-peoples-access-to-your-organization-with-roles/roles-in-an-organization#organization-members
https://docs.github.com/en/organizations/managing-peoples-access-to-your-organization-with-roles/roles-in-an-organization#organization-moderators
https://docs.github.com/en/organizations/managing-peoples-access-to-your-organization-with-roles/roles-in-an-organization#billing-managers


• The GitHub App manager role can manage some or all 
GitHub Apps registered by the organization on top of 
the basic, required member role’s permissions.

• The outside collaborator role allows limited access to 
selected organization repositories. It has to be further 
controlled with repository-level permissions.

You can also configure the permissions of individual 
members, outside collaborators, and entire teams in 
relation to selected repositories by assigning them one 
of the repository-level roles:

• Read provides read-only access to the repo’s content 
and related resources (issues, pull requests, and so on).

• Triage has additional permissions to better proactively 
manage issues, pull requests, and more.

• Write has further write permissions to the repo’s 
content to perform actions such as merging pull 
requests or creating releases.

• Maintain has broad access to the repository, with 
the exception of dangerous or destructive actions.

• Admin has full access to the repository, including 
permissions to change security settings or delete 
the repository.

Managing Authorization and Access Control in GitHub Organizations

If you have the necessary permissions, you can manage 
the roles of other users in the dedicated settings panels of 
the entire organization or individual repo. If you want to do 

this effectively, you’ll need a strong understanding 
of GitHub’s access control system and its UI dashboard.

General User and Team Management

Managing your GitHub organization begins with inviting 
members. From the main organization dashboard, go to 
the People tab and click Invite member. Then, from the 
respective dropdown menu, you can convert any member 
to an outside collaborator, further manage their access 
to select repositories, or completely remove them from 
the organization:

In addition to managing members individually, you can also 
assign them to teams and manage their repository access 
and permissions collectively.

To create a new team, head to the Teams tab and click 
New team, then fill in the relevant details:

https://docs.github.com/en/organizations/managing-peoples-access-to-your-organization-with-roles/roles-in-an-organization#github-app-managers
https://docs.github.com/en/organizations/managing-peoples-access-to-your-organization-with-roles/roles-in-an-organization#outside-collaborators
https://docs.github.com/en/organizations/managing-user-access-to-your-organizations-repositories/managing-repository-roles/repository-roles-for-an-organization#permissions-for-each-role


Organization-Level Access Control

The member role serves as the base role for the 
organization’s users. GitHub provides extra organization-
level tools to enhance control over the privileges associated 
with this role.

You can configure various options for the member role 
in the organization’s Settings tab under the Member 
privileges section. Most importantly, this includes base 
permissions, meaning the level of access each member 
will possess across all repositories. Additionally, you can 
customize access to various actions within repositories, 
projects, issues, and more:

Once you create a team, you’ll be redirected to its 
dedicated dashboard:

From here, you can manage the team, including its details, 
members, and repository-level roles. You can add a 
member to the team by clicking Add a member. This can 
be someone who is already an organization member or 
someone you are inviting to become a member of both 
the team and the entire organization.

In the Teams tab, you can also add an entire child team 
by clicking Add a team. This can be used to better organize 
and manage access control:

You can assign a repository-level role to a team to provide 
repository access. To do this, go to the Repositories panel 
and click Add repository:

For each repository you add, you’ll have to choose a role 
to assign to the team.



You can also assign other organization-level roles from the 
Settings tab.

To assign billing managers, go to the Billing and plans > 
Billing managers section and click Invite:

You can assign existing users or entire teams as moderators 
in the Moderation > Moderators section:

Lastly, you can assign the GitHub App manager role 
to existing organization members from the Developer 
Settings > GitHub Apps > Management section:

Among the different settings for managing your 
organization, the Repository roles section is particularly 
useful. It lets you see all the predefined repository-level 
roles. If you have a GitHub Enterprise account, it also lets 
you create custom repository roles for even more fine-
grained control:

Custom repository roles aren’t the only advantage of the 
GitHub Enterprise plan when it comes to access control. 
The plan also gives you access to more authentication 
security settings, including SAML Single Sign-On (SSO), 
custom enterprise policies, and an IP allow list—all certified 
for compliance.

https://github.com/enterprise


Repository-Level Access Control

In addition to configuring repository-level roles through 
settings for members or teams, you can also do this at the 
level of a given repository:

In the repository dashboard, under Settings > 
Collaborators and teams, you can use the Add people 

and Add teams buttons and manage repository-level roles 
accordingly for members and outside collaborators or teams:

This provides you with an alternative way to manage access 
control, reassuring you that the changes you make affect 
only the selected repository.

Strengths of GitHub’s Authorization Model

Having a good understanding of GitHub’s access control 
model, its implementation, and its usage allows you to 
better understand its strengths and limitations.

Having granular controls and the ability to configure 
individual user access to selected repositories allows you to 
manage an organization at any scale. GitHub’s RBAC model, 
its built-in roles, and its implementation of teams and sub-
teams provide enough control and flexibility so that you 
can model the access control settings after the way your 
organization is structured.

Large organizations with hundreds of members can use 
teams and sub-teams to manage general access at the 
team level. Individual teams can then manage their own 

members, allowing for easier control within a focused 
scope. On the other hand, smaller organizations can 
manage individual members’ roles directly and take 
advantage of the “outside collaborator” role for onboarding 
new or temporary members.

Further access control configuration at the repository level 
facilitates collaboration and various repository-bound 
workflows that are available on GitHub. From managing 
pull requests and issues to using GitHub projects or CI/CD, 
proper access control makes sure only trusted members 
have access to dangerous or destructive actions.



Limitations and Challenges of GitHub’s Authorization/Permission Model

That said, GitHub’s model does have its limitations.

GitHub’s RBAC implementation provides many tools that 
allow you to have granular control over the roles of every 
member of the organization. However, with such flexibility 
comes increased complexity, which can quickly become a 
challenge, especially when managing a large organization. 
From the organization-level roles, through teams and sub-
teams, down to individual members’ permissions to select 
repositories, having to manage and delegate tasks through 
all the levels can quickly get out of hand.

While complexity may only affect large organizations, 
the limitations of GitHub’s RBAC implementation can 
be experienced at any scale. Even though GitHub has 
a concept of permissions, you’re limited to assigning 
predefined roles for the most part. The few configuration 

options GitHub provides may not be enough in case you 
need to create custom roles (for example, for contractors or 
community managers) to accurately model access control 
in your organization. Such a level of control is reserved only 
for GitHub Enterprise accounts.

However, custom roles aren’t the only advantage of GitHub 
Enterprise Cloud. If your organization has to adhere to 
special compliance and security standards, no account type 
other than Enterprise can fit your needs. This vastly limits 
your options and can be especially problematic for smaller, 
specialized organizations, which must adhere to various 
standards but have little need for other features of GitHub 
Enterprise. Still, in such cases, Enterprise Cloud, being 
certified for compliance (with annual SOC 1 Type 2 and SOC 
2 Type 2 reports) and providing extended authentication 
security features (like SAML SSO), is your only option.

Conclusion

You should now know how GitHub’s RBAC model works 
and how you can make the best use of it in your GitHub 
organization.

Implementing role-based access control as advanced as 
GitHub’s might seem challenging, but it doesn’t have to be. 

With ConductorOne, an identity security automation 
platform, you can easily add modern, user-focused access 
controls with streamlined self-service requests and just-
in-time provisioning to any app. Check out the official 
documentation to learn more.

Want to learn more about our identity 
security platform for modern workforces?

team@conductorone.com

GET A DEMO

https://docs.github.com/en/enterprise-cloud@latest/organizations/managing-user-access-to-your-organizations-repositories/managing-repository-roles/about-custom-repository-roles#custom-role-examples
https://www.conductorone.com/
https://www.conductorone.com/docs/product/intro/
https://www.conductorone.com/docs/product/intro/

