
In an era where cloud computing powers most of the
products and services on the web, secure and efficient
management of access to cloud resources is crucial.
For organizations using the Google Cloud Platform
(GCP), mastering the art of access control is not just
a best practice; it’s an essential component of maintaining
the integrity, security, and compliance of their
cloud environments.

GCP has a detailed access control model. It allows you
to manage permissions and policies for your resources
across hierarchies, enabling you to easily set up and
manage access for your team members. In this article,
you’ll learn what the GCP access control model is all
about, how it works, what its pros and cons are, and what
the best practices are for setting up your organization’s
access control strategy.

Understanding GCP Access Control

Before getting into how to manage access in GCP, it helps to be aware of a few key concepts
used in GCP access control.

Here’s a quick overview of the GCP access model for a resource:

Everything You Want
to Know about GCP
Access Control

https://www.conductorone.com
https://cloud.google.com/

Principals

The entities that can access GCP resources are known
as principals. A principal can be a Google account, a service
account, a Google Group, a Google Workspace account,
or a Cloud Identity domain.

Each of these entities has a unique identifier, usually an
email address. They can also be assigned roles, and you
can bind them to resources using Identity and Access
Management (IAM) policies.

Each resource in GCP has an associated allow policy that contains role bindings. Each role binding
is a set of members, roles, and conditions. You’ll learn more about these in the coming sections.
Granting someone access to a GCP resource essentially means creating a role binding for them
in the resource’s allow policy that provides them with the necessary role to access the resource
appropriately, optionally under a condition if needed.

GCP resources constitute a hierarchy through projects, folders, and organizations.
Role bindings set at a higher level in the resource hierarchy get inherited by each resource below it:

Permissions and Roles

Permissions in GCP are the granular actions that dictate
what someone can do with a resource. These actions range
from read-only operations, like viewing a resource, to more
powerful actions, like creating or deleting it.

Roles in GCP define a set of permissions that can be
assigned to principals. These specify what actions can be
performed on which resources. GCP provides a spectrum

of predefined roles, each tailored to a specific set of
responsibilities, making it easier to grant appropriate
access without the need to create roles from scratch.
GCP also provides a few basic roles that allow general
access to most resources. However, if neither of these
two fits your purpose, you can always create custom roles.

https://support.google.com/cloudidentity/answer/7319251
https://cloud.google.com/iam/docs/roles-overview#predefined
https://cloud.google.com/iam/docs/roles-overview#basic
https://cloud.google.com/iam/docs/roles-overview#custom

IAM Policies

IAM policies act as the rulebook for your access control
strategy. These policies determine which principals have
what level of access to which resources. When you grant
a principal access to a role for a resource, the role binding
is stored in the resource’s IAM policy, also known as its
allow policy.

“Additionally, you can also create deny policies to deny
permissions for certain principals in the resource. These
are different from allow policies, and each GCP resource
can have up to five deny policies.”

IAM policies provide the framework for implementing the
principle of least privilege, ensuring that individuals and
services are granted only the permissions they require to
perform their designated tasks.

IAM policies can be directly attached to resources, and
each resource can have only one policy. Here’s what the
JSON representation of an IAM policy looks like:

{
 “bindings”: [
 {
 “members”: [
 “user:kumar@example.com”
],
 “role”: “roles/resourceManager.
projectCreator”
 }
],
 “etag”: “some value here”,
 “version”: 1
}

This policy grants the user with the email address
kumar@example.com the ability to create projects.
Once you attach this policy to a GCP organization or
folder, the user will be able to create projects under
that organization or folder.

GCP Resource Hierarchy

GCP resources can be organized using containers, such
as organizations, folders, and projects. An organization
is usually attached to a Google Workspace and a Cloud
Identity domain, and an organization can have multiple
folders. Folders are containers for projects to allow you
to build a hierarchical access model with access inheritance
across a large number of projects easily. Finally, projects
are the lowest level of resource containers, and they help

you provision resources for a single business initiative
(such as an application or a system) in one place.

GCP access policies are propagated across the hierarchy
created using the resource containers listed earlier. This
inheritance allows you to simplify access management, and
you can also replicate your organization’s internal hierarchy
to better manage GCP access.

Managing Access in GCP

Now that you’ve been introduced to the main concepts
in GCP access control, it’s time to learn how to manage
permissions in the GCP platform.

https://cloud.google.com/iam/docs/policies
https://cloud.google.com/iam/docs/deny-overview
https://cloud.google.com/iam/docs/deny-access#:~:text=Each%20of%20these%20resources%20can%20have%20up%20to%205%20deny%20policies.
https://cloud.google.com/resource-manager/docs/creating-managing-organization
https://cloud.google.com/resource-manager/docs/creating-managing-folders
https://developers.google.com/workspace/guides/create-project

Granting and Revoking Permissions in GCP

Granting and revoking permissions is a very straightforward task in GCP. You can start by navigating
to the IAM and admin page in your GCP account. GCP will most probably autoselect a project for you.
Make sure to select the appropriate project by clicking the projects drop-down at the top left
of the window:

In the dialog that opens, choose the appropriate project. You can also create a new project if you
don’t have one in your account:

Once you have selected your project, you can now grant access to principals.
To start off, click the GRANT ACCESS button on the IAM page:

https://admin.google.com/ServiceNotAllowed?service=cloudconsole&continue=https://console.cloud.google.com/iam-admin/iam?authuser%3D0%26project%3Dmy-android-app-398905%26pli%3D1&pli=1

On the side pane that appears, you can choose the specifics of the new permission binding:

This pane allows you to first choose a principal that will receive access and then assign that principal
a role to define what they will be able to do within the chosen resource (in this case, the My Android
App project).

Once you click the SAVE button, a new entry in the permissions table is created:

Similarly, you can assign IAM roles to users, groups, and service accounts. It’s recommended that
you use Google Groups to allow easy updating of the users associated with a role without having
to manually follow this process every time. Groups can also be associated logically with a business
function, such as development or DevOps; hence, it makes logical sense to grant the entire team
access to the necessary resources rather than do it for each member individually. Furthermore,
if an employee leaves or joins the team, they will be added to or removed from the Google Group
as well, which will automatically handle the granting or revoking of their access to GCP resources.

Revoking permissions is quite simple. Click on the checkbox on the left end of the permission
that you wish to delete, and click on the REMOVE ACCESS button above the table:

Click CONFIRM on the dialog box that appears, and the chosen permission will be removed
from the resource:

Implementing IAM Conditions and Fine-Grained Permissions
Across Resource Hierarchy

When granting access to a resource, you can set up IAM conditions, as mentioned earlier,
o allow conditional access to the chosen resource. You can set both attribute-based access
rules and time-based access rules for each permission that you grant.

When you click on the ADD IAM CONDITION button in the side pane that opens up when granting
access, another side pane pops up that looks like this:

Support for Any Architecture | Deep Dive into ConductorOne Integrations 00

You can set a title and description for your condition that will help you understand its purpose
when you refer back to it later. You can use either the condition builder or the condition editor
to create the condition.

For instance, if you wanted to only grant john@doe.com to the Cloud Storage objects in a particular
bucket named my_bucket_kh under the chosen project for a week, the condition builder would look
like the following:

You can now choose the Storage Admin role for the permission, but the user will still be able
to only access the resource based on the condition you attached to the permission.

You’ll notice that the condition is mentioned in the permissions list as well:

You can use conditions to set up fine-grained access control easily in GCP.

Additionally, you may have noticed that the first entry in the permissions list contains a value
for the Inheritance column:

This indicates that this role was inherited from the organization resource and will be auto-added
to any projects that are created in the same organization. You can set more roles to be auto-inherited
by the projects in an organization by adding them to the organization’s permissions list.

To do that, click on the projects drop-down at the top left of the page and click on your organization:

You will now see a list of permissions that are granted for the organization resource.
Grant a new permission here using the GRANT ACCESS button:

Once you create this entry, go back to your project’s IAM page to see the list of permissions:

You’ll see that the newly created permission at the org level is automatically inherited to your project.
This is how you can propagate access through the resource and containers hierarchy. The same
applies to folders as well.

Managing Access through IAM Policies

As mentioned already, all permission rules are stored as
policies attached to resource objects. This means that you
can directly create policy objects in either JSON or YAML
and attach them to GCP resources instead of having to
manually grant access one by one through the UI.

You can use the GCP SDK or the GCP CLI to attach policies
directly to GCP resources. Here’s a sample policy JSON:

{
 “bindings”: [
 {
 “members”: [
 “user:jane@doe.com”
],
 “role”: “roles/viewer”
 }
],
 “etag”: “new policy”,
 “version”: 1
}

You can save the JSON object in a file named, for example,
policy.json , and run the following command to add it to
your GCP organization:

gcloud organizations set-iam-policy your-
project.domain policy.json

This uses the gcloud CLI to attach the policy object directly
to the organization resource. You can do the same to any
GCP resource, with commands like gcloud compute
instances set-iam-policy ... and gcloud
project set-iam-policy

You can also use the add-iam-policy-binding
command to directly add a role binding to an existing
policy on a resource instead of creating and supplying
the complete policy object:

gcloud organizations add-iam-policy-binding
your-organization-id --member=’user:jane@doe.
com’ --role=’roles/viewer’

Alternatively, you can use this method to set conditions:

gcloud organizations add-iam-policy-binding
your-organization-id --member=’user:jane@
doe.com’ --role=’roles/viewer’
--condition=’resource.name == \”my_bucket_
kh\”’

Finally, you can also set conditions through the set-iam-
policy method by adding it to your policy JSON object:

{
 “bindings”: [
 {
 “members”: [
 “user:jane@doe.com”
],
 “role”: “roles/viewer”,
 “condition”: {
 title: “Bucket access only”
 description: “Grant access to the my_
bucket_kh bucket only”
 expression: “resource.name == \”my_
bucket_kh\””
 }
 }
],
 “etag”: “new policy”,
 “version”: 2
}

https://cloud.google.com/sdk?hl=en
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/gcloud

What’s Great about GCP Access Control

As you have seen already, GCP implements quite a detailed
model of access control. The following are some of the
strongest advantages of the GCP access control model:

• Granularity in defining permissions: As you’ve seen
already, GCP enables you to grant granular access to
resources structured using projects, organizations, and
folders, to individual users, groups, service accounts,
and even domains. You can control who can access
resources, what actions they can perform on those
resources, and under what conditions.

• Easy assignment and management of IAM roles:
As shown earlier, adding and removing principals from
resources and roles is quite straightforward. On the
IAM page of the Google Cloud Console, you can manage
the permissions for all your GCP resources quite easily.
GCP offers a wide range of predefined roles that cover

common use cases. These roles make it easier to assign
appropriate permissions without having to create
custom roles from scratch.

• Seamless integration with other GCP services for
access control: With product and service-level roles,
you can easily grant principals access to a wide range
of GCP services from a single management portal.
Additionally, GCP seamlessly integrates with identity
providers like Google Workspace and external identity
systems, making it easier to manage access and
authentication.

• Access control aligned with resource hierarchy: GCP
has a hierarchical structure, including organizations,
folders, projects, and resources. This hierarchy allows
you to set access control policies at different levels,
simplifying management for large organizations.

Challenges with GCP Access Control

While the GCP access model is quite robust and easily
manageable, it has a few shortcomings:

• Challenges in maintaining and auditing permissions
at scale: Defining and managing IAM policies can
become complex in large organizations or projects
with numerous users, groups, and roles. Keeping track
of who has access to what resources and at what level
of granularity can be challenging, especially since
the IAM UI does not provide a high-level view
of permissions across projects. You can use the
Policy Analyzer to query permissions from across
your projects and resources, but it can still be a
very cumbersome experience.

• Potential issues with policy inheritance and
propagation: While the resource hierarchy in GCP
is beneficial for access control, it can also become
complex in large organizations with many projects,
folders, and resources. Ensuring consistent access

policies across this hierarchy can be challenging.
As organizations create custom roles, there’s a risk
of permissions overlap or conflicts between roles.
This can lead to unexpected or undesirable access
scenarios, such as greater permissions than necessary
being granted to a principal.

• Considerations for managing access in multitenant
environments: Managing access control in a
multitenant environment often requires you to
create a large number of custom roles. Creating and
maintaining custom IAM roles for each tenant can
become unwieldy, leading to role explosion. You must
also establish efficient processes for tenant onboarding
and offboarding, including the provisioning and
deprovisioning of access and resources to avoid security
issues and cost inefficiencies.

https://cloud.google.com/policy-intelligence/docs/policy-analyzer-overview
https://blog.plainid.com/role-explosion-unintended-consequence-rbac

Want to learn more about our identity
security platform for modern workforces?

team@conductorone.com

GET A DEMO

Best Practices for Using GCP Access Control

When working with GCP access control, there are a few tips
you can keep in mind to get the most out of it:

• Implement the principle of least privilege: Make
sure that your roles and policies only provide access
to those principals that need it and that you only grant
the minimal necessary access. Try to avoid using overly
permissive roles like Owner as much as possible. Prefer
predefined roles over basic roles wherever possible.

• Regularly review and audit IAM policies: Make sure
that you keep a close eye on your GCP account access
history. Enable Cloud Audit Logs to track and monitor
user and system activity in your GCP account. Use
Cloud Monitoring and Cloud Logging to set up alerts

and monitor for suspicious activities. Regularly review
permissions and policies to ensure your team members
have only the permissions they need.

• Utilize conditional bindings: Make sure to implement
IAM Conditions to add context-based restrictions to
your IAM policies and permissions. For example, restrict
access to resources based on IP addresses, device
attributes, or time of day. You could also use conditional
bindings to grant temporary access to principals,
which gets autodisabled after a set period of time,
to be deleted later.

• Implement multifactor authentication (MFA): As with
most modern systems, enforce the use of MFA for all
users to add an extra layer of security to their accounts.

Conclusion

GCP Access Control is an important aspect of securing your
cloud environment and ensuring that your organization’s
data and resources remain safe and secure. This article
explored the key components, benefits, and best practices
associated with GCP access control mechanisms.

You saw how the GCP IAM allows for fine-grained control
over who can access what resources, emphasizing the
principle of least privilege. You also learned about the
shortcomings of the GCP access control methods. If you are
looking to security your GCP environment with just in time
access, self service, and full visibility over permissions and
user authorization, make sure to check out ConductorOne.

ConductorOne is on a mission to modernize access controls
to reduce standing privilege, boost team productivity, and
enforce zero trust with self-service access, just-in-time
provisioning, and automated access reviews. For modern
companies, this often lives at the intersection of IT and
security teams, who are responsible for managing and
securing access across their workforce.

https://cloud.google.com/logging/docs/audit
https://cloud.google.com/monitoring?hl=en
https://cloud.google.com/logging?hl=en
https://www.conductorone.com/

