
4 Ways to Configure
AWS Access

As cloud computing continues to revolutionize the way
businesses operate, Amazon Web Services (AWS) has
maintained its reputation as one of the field’s leading
providers. With its vast array of services and features,
AWS offers organizations the ability to scale, deploy,
and manage cloud resources with ease.

Ensuring that the right people get the right access to these
resources is paramount. Unauthorized access can lead to
data breaches and a multitude of other security concerns.
This is where AWS access control and management models
come into play.

Configuring access control in AWS is inherently
complex, but we’ll make sense of it all in this article.
Specifically, we’ll explore four different approaches
to configuring AWS access, each tailored to specific
use cases and requirements. By understanding the
advantages, disadvantages, and tradeoffs of each
method, you’ll gain insights into which approach best
aligns with your organization’s needs.

AWS Access Management Method 1: Local IAM Users

In AWS, Identity and Access Management (IAM) is the
service that helps you define access permissions to
AWS services and resources. One method of access
management is through the use of local IAM users.
Consider the following diagram:

The diagram above depicts 3 IAM users in a single AWS
account. Each user consists of a name (i.e., root , user_a
, or user_b) and a set of credentials. The credentials are
represented by an IAM policy that’s attached to each user.
The policy (i.e., admin , policy_a , or policy_b) defines
the actions that the user is allowed to perform within the
account. Whenever you log into an AWS account, you log in
as a specific IAM user.

The root user is special. It comes bundled with each
new AWS account and has admin privileges to every AWS
service and resource. Because of this, AWS advises against
using the root user to perform everyday tasks. To limit
permissions for certain users and minimize the impact of
potential mistakes, you can create additional users with
fewer permissions to perform day-to-day operations.

To summarize this first method: Using the root user, we
can create other users that have fewer permissions. Then,
to follow security best practices, you can log in as one of
the other users to perform daily operations instead of as
the root user.

https://www.conductorone.com
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html)
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html

Advantages of This Method

• Granular controls: For each local IAM user,
you can customize exactly what services, actions,
and resources that user is allowed access to. This high
level of granularity can help organizations tailor access
rights to the specific needs of individual users or groups.

• Flexibility: IAM allows you to set access controls
to specific actions and resources, making it very flexible
and customizable. In addition, IAM is completely
managed by AWS, so organizations can manage user
accounts entirely within the AWS environment.

• Local credential management: Each local IAM
user manages their own set of access keys (access
key ID and secret access key), which are used for
programmatic access to AWS services.

• Audit trail: AWS provides detailed logging and
monitoring for all IAM user activities. This audit trail
helps organizations track user actions and changes
to access permissions in case something goes awry.

Disadvantages of This Method

• Admin overhead: As the number of users and
permissions grows, managing local IAM users becomes
a huge operational burden. The process of creating,
modifying, and revoking user access may require
significant effort, particularly in larger organizations
with complex access requirements.

• Management complexity: Keeping track of permissions
and ensuring they are up-to-date can be challenging.
Without proper organization and documentation,
managing access control configurations can lead
to errors and inconsistencies.

• Lack of centralized control and visibility:
If your organization manages multiple accounts, it can
be hard to enforce consistent security policies across
all of them since local IAM users are managed at the
individual account level.

• Limited integration with external Identity
Providers (IdPs): IAM may not seamlessly integrate
with external IdPs. If your organization already
has an established IdP, this can result in redundant
access management processes.

Setting It Up

Suppose we have a user, user_a , that only has to be concerned with reading from a couple of
specific S3 buckets. To set up user_a , we might first create an IAM policy, policy_a , as follows:

{
 “Version”: “2012-10-17”,
 “Statement”: [
 {
 “Effect”: “Allow”,
 “Action”: [
 “s3:Get*”,
 “s3:List*”,
 “s3-object-lambda:Get*”,
 “s3-object-lambda:List*”
],
 “Resource”: “*”
 }
]
}

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Note that this is the same as the AWS Managed Policy AmazonS3ReadOnlyAccess. If we attach this
policy to user_a and log into the AWS account as user_a , here’s a visual depiction of the actions
we’re allowed to perform:

For the above diagram:

• user_a is allowed to perform READ
actions on S3 buckets.

• user_a is not allowed to perform WRITE
actions on S3 buckets.

• user_a is not allowed to perform any actions
on any other services (i.e., DynamoDB).

Doing this protects us from unexpected operations, such
as an accidental s3:putObject that overrides an object,
or even worse, a dynamodb:deleteTable that removes
an entire database table. If all we care about is reading
from S3 buckets, we should be logged in as a user that
contains S3 read permissions only.

Security Best Practices for this Method

• Use Multi-Factor Authentication (MFA): Unsurprisingly,
enforcing MFA for local IAM users is a fundamental
security best practice and greatly reduces the risk
of unauthorized account access.

• Implement the Principle of Least Privilege (PoLP):
Assign the minimum necessary privileges to each user
whenever possible. Avoid granting broad or excessive
permissions, as this could inadvertently expose
sensitive resources to security risks.

• Regularly rotate access keys: Set up a mechanism
to automatically rotate access keys at regular intervals.
This reduces the window of opportunity for attackers
to exploit compromised or leaked keys.

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonS3ReadOnlyAccess.html
https://aws.amazon.com/what-is/mfa/

AWS Access Management Method 2: Account Level SSO

Local IAM users tend to work well in the beginning.
However, as your organization starts to scale, you’ll
probably need a more centralized access control method.
This is where Account Level Single Sign-On (SSO) comes in.

As its name implies, in an SSO model, once the user
is authenticated by an Identity Provider (IdP), they gain
access to all the AWS accounts they are authorized
to access without having to sign in multiple times.
This eliminates the need to manage separate IAM
credentials for each individual account, and greatly
simplifies the authentication experience.

For account administrators, account-level SSO also
helps streamline the process of access management by
providing a centralized place to manage user identities.
That centralized place is the IdP itself, which is useful for
organizations that already use their own IdP but still want
to use AWS.

In AWS, IAM Identity Center is the service that enables
organizations to set up SSO to their AWS accounts.
Note that IAM Identity Center used to be called AWS
Single Sign-On up until July 2022. Here’s a high-level
diagram of how account-level SSO works.

In the above diagram:

1. Users first authenticate through an external IdP.
This example uses Microsoft Azure Active Directory
(or Microsoft Entra ID), which is fully compatible
with IAM Identity Center.

2. If user authentication succeeds, the user is directed
to a portal in IAM Identity Center.

3. The user is granted SSO access to all AWS accounts,
cloud applications, and other SAML-enabled
applications that they’re assigned to, as defined
in IAM Identity Center.

4. The user can then access any of these AWS accounts
and applications without having to log in separately
or manage different AWS credentials for each account.

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://azure.microsoft.com/en-us/products/active-directory
https://azure.microsoft.com/en-us/products/active-directory

Advantages of This Method

• Centralized management: Account administrators can
handle access management to multiple AWS accounts
through a central IdP. This helps enforce consistent
access control policies with minimal surprises.

• Streamlined user experience: A single sign-on experience
is generally better for users, who no longer have to remember
or manage separate IAM credentials for each account.

• Enhanced security (compared to local users): SSO
can leverage the advanced authentication capabilities

of external IdPs, including built-in features like MFA.
Centralized control also enables quicker response
to security threats and policy violations.

• Federated identity: Account-level SSO enables
organizations to establish trust between their AWS
accounts and external IdPs. This facilitates federated
identity management, allowing users to log in using
their existing corporate credentials without having
to create new passwords.

Disadvantages of This Method

• Initial Setup Complexity: Implementing account-level
SSO requires initial configuration and integration with
an external IdP. Depending on the complexity of the
organization’s existing infrastructure, setting up SSO
can take time and effort.

• Dependency on external IdPs: Any downtime in the IdP
can severely affect the ability of your users to access AWS
accounts and resources, so be sure to choose a reliable IdP.

• Limited Flexibility: Certain accounts may have unique
access control requirements. These might be better handled
outside of a centralized identity management system.

• Compliance Considerations: Organizations must
consider compliance requirements related to handling
user identities and sensitive data within the IdP. Ensure
the chosen IdP aligns with current regulatory standards
and security best practices.

• Delegated Administration of Access to the IdP Owner:
In this model, the IdP owner has significant power and
responsibility in managing user identities across AWS
accounts. Organizations must ensure their IdP owners
can be trusted and/or at least consider this implication
in understanding your threat model.

Setting It Up

You can set up account-level SSO entirely from the AWS
console. If you haven’t already enabled the Identity Center
service, you can do so from the Identity Center console.
The account needs to be managed by AWS Organizations,
but you can also choose to create an organization when
you enable Identity Center.

Once you’ve enabled Identity Center, the service
dashboard contains links and guides to help you
through the setup process.

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-enable-identity-center.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-enable-identity-center.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-prereqs-considerations.html#prereqs-organizations

Security Best Practices for This Method

• Use a secure and reliable IdP: Choose a trusted and
reputable Identity Provider for your Account Level
Single Sign-On (SSO) implementation. AWS supports
all of the major cloud identity providers, so this
shouldn’t be a big issue.

• Implement MFA: Enable Multi-Factor Authentication
(MFA) for all users accessing AWS accounts through
Account Level SSO.

• Enforce strong password policies: Your IdP should
enforce strong password policies for all accounts.

Strong passwords should be long, complex,
and include a combination of uppercase and
lowercase letters, numbers, and special characters.

• Monitor external IdP security: Because so much
of SSO relies on your IdP, regularly keep track of
security updates, patches, and changes in your
IdP’s configuration. Stay informed about any security
incidents or vulnerabilities that may impact your IdP,
and take prompt action to mitigate risks.

AWS Access Management Method 3:
Organization-level SSO Groups and Users

In account-level SSO, the focus is on providing single
sign-on capabilities for multiple AWS accounts within an
organization. Organization-level SSO is very similar, but
it allows entire organizations to create groups and users
centrally within AWS Organizations. These groups and
users can then be granted access to specific AWS accounts
and resources via IAM roles and policies.

Setting up organization-level SSO generally still requires
the use of an external IdP, but user management is
centralized through AWS Organizations. Administrators

create and manage groups at the organization level and
assign them to specific AWS accounts with the necessary
IAM roles and policies.

The following is a high-level diagram of what organization-
level SSO might look like. Note that the only difference
is the extra focus on AWS Organizations, which Identity
Center uses to determine which accounts the user is
allowed to access. Technically, AWS Organizations was
involved in the account level SSO method as well, but since
we didn’t need it to handle accounts at scale, we left it out
of the previous diagram for simplicity.

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html

In the above diagram:

1. Users first authenticate through an external IdP. This
example also uses Microsoft Azure AD as the IdP.

2. If the user authentication succeeds, the user is directed
to a portal in IAM Identity Center.

3. In the backend, IAM Identity Center consults AWS
Organizations.

4. AWS Organizations defines the list of accounts that the
authenticated user is allowed access to.

5. The user is granted SSO access to all AWS accounts as
defined by AWS Organizations.

Advantages of This Method

• Centralized management: Within AWS Organizations,
administrators can control user access policies from
a single, centralized location.

• Streamlined user experience:
As with account-level SSO, users can enjoy a seamless
single sign-on experience.

• Consistent security policies across the organization:
Organization-level SSO enables organizations
to enforce consistent security policies across all
owned AWS accounts. With centralized IAM roles
and policies, security measures are standardized
and easier to maintain.

• Easy user provisioning and de-provisioning:
When a user joins or leaves the organization,
it’s easy for the administrator to grant or revoke access,
and/or for SCIM to automatically do so, to the relevant
AWS accounts. This greatly reduces the risk of orphaned
accounts or unauthorized access.

• Fine-grained access control: IAM roles and policies
form the backbone of this access method. This allows
for fine-grained access control, ensuring users only
have access to the specific AWS resources required
for their roles.

Disadvantages of This Method

• Initial setup complexity: Integrating with an external
IdP may involve complex setup procedures. In addition,
administrators must be careful when setting up trust
relationships and configuring IAM roles and policies.

• Dependency on External IdPs: SSO depends on
your IdP; if the IdP goes down, this may impact
your organization’s access to AWS resources.

• Limited Flexibility: If your accounts have special access
control requirements, a centralized access management
system might not be the best choice
for your organization.

• Vendor lock-in: Choosing an IdP must be done with
care, since changing it down the road might involve
significant costs and effort.

• Delegated Administration of Access to the IdP Owner:
In this model, the IdP owner has significant power and
responsibility in managing user identities across AWS
accounts. Organizations must ensure their IdP owners
can be trusted and/or at least consider this implication
in understanding your threat model.

Setting It Up

To set up organization-level SSO, you’ll have to create an
AWS Organizations organization and enable Identity Center,
just like we did for account-level SSO.

First, configure your organization. In AWS Organizations,
an organizational unit (OU) is a group of accounts that

share the same access control policies. In the following
screenshot, there are two OUs: Sandbox and Gamma-
Environments.

For each OU, you can then configure any number of users
to grant access to. For instance, if you wanted to grant
user_a access to all Gamma-Environments accounts,
you can do so from the AWS Organizations console.

Once you set this up, when user_a authenticates via
SSO from their Identity Center user portal, they’ll be able
to access the accounts in Gamma-Environments.

Security Best Practices for This Method

• Utilize Role-Based Access Control (RBAC):
RBAC assigns users specific roles with pre-defined
permissions based on their job responsibilities within
the organization. This ensures that all users only have
access to the resources necessary for their roles.

• Regularly monitor and audit security: Use tools
like AWS CloudTrail to track user activity and
changes to permissions. Regular security audits
help detect suspicious activities and potential
security vulnerabilities.

• Implement PoLP: The Principle of Least Privilege (PoLP)
is a central theme and best practice across all of AWS.
Avoid overly permissive roles, and periodically review
and adjust user permissions based on changes in roles
or responsibilities.

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_ous.html
https://aws.amazon.com/cloudtrail/
https://en.wikipedia.org/wiki/Principle_of_least_privilege

AWS Access Management Method 4:
JIT Authorization from Identity Provider

The final AWS access management method is Just-In-Time
(JIT) authorization from an IdP. This method allows
for on-demand, automatic provisioning of user access
to AWS resources when they attempt to sign in.

Central to JIT authorization is the Security Assertion
Markup Language (SAML). SAML is an open standard for
transmitting identity data between an IdP and a cloud
service provider like AWS.

In this access model, when a user attempts to access
AWS resources, they’re first directed to the IdP for
authentication. After the user provides their credentials,
the IdP generates a SAML assertion. This contains
SAML groups, which are elements of information about
users such as their identity, group memberships, and
any additional attributes relevant to their AWS access
credentials. The IdP sends this SAML assertion back to
AWS, which then maps these SAML groups over to IAM
roles. Here’s a diagram illustrating what this workflow
typically looks like.

In the above diagram:

1. The user wants to access AWS resources and provides
authentication credentials.

2. AWS checks the credentials with a trusted external IdP.

3. The IdP returns a SAML assertion, informing AWS IAM
of the various group memberships the user has access
to.

4. Based on the SAML groups, IAM provisions and assigns
a temporary IAM role to the user.

5. The user can then use this role to access the desired
AWS resources.

https://auth0.com/blog/how-saml-authentication-works/
https://auth0.com/blog/how-saml-authentication-works/

Advantages of This Method

• Reduced attack surface: JIT authorization doesn’t
use long-term IAM credentials, which greatly reduces
the potential for attacks. Users receive temporary
credentials for a limited duration, minimizing the
window of opportunity for attackers to steal credentials.

• Minimal credential lifespan: JIT authorization ensures
that access rights are only valid for a short, necessary
period of time, reducing the risk of unauthorized access
if credentials are compromised.

• Improved security: Overall, JIT provides strengthened
security since there is little to no risk of inactive
or lingering credentials.

• Simplified user management: Administrators won’t
have to manually manage IAM roles for each user.
Instead, IAM can automatically provision roles based
on the SAML assertions returned by the IdP.

Disadvantages of This Method

• IdP becomes a single point of failure: Like the other
IdP-centric methods, JIT authorization relies heavily
on the availability and reliability of the IdP. Downtime
in the IdP often means users won’t be able to access
AWS resources.

• Increased complexity of configuration: Configuring JIT
authorization and integrating it with an IdP can be more
complex than traditional IAM user management.

• Deep coupling to IdP and configuration: With JIT
authorization, your IdP and AWS auth become deeply

coupled. This can make it challenging to switch
to another IdP or modify configurations without
impacting access to resources.

• Difficulty in visibility of access: Since credentials used
in JIT authorization are temporary, it can be challenging
to gain real-time visibility into user access rights.
Administrators may need to rely on detailed logging
to track access patterns effectively.

Setting It Up

In our high-level diagram above, we depicted AWS IAM
as the service entity that checks with the IdP and vends
credentials back to the user based on the SAML assertion.
In practice, AWS Identity Center acts as the entity that
does all this and provides SSO capabilities.

As with the other SSO methods, you’ll first have to choose
an external IdP and enable the Identity Center service.
Then, in the Identity Center console, create a custom SAML
integration application for your chosen IdP. You’ll need to
provide the metadata or SAML endpoint URLs provided by
the IdP during this setup.

Next, you can use attribute mappings to map group
memberships listed by your IdP to AWS IAM roles
in the console. Verify that your setup is working

as expected by having users sign in through the IdP
and access AWS resources.

https://docs.aws.amazon.com/singlesignon/latest/userguide/attributemappingsconcept.html

Security Best Practices for This Method

• Choose a reputed IdP: Ensure that your IdP adheres
to industry security standards and best practices.
A reliable IdP with a proven track record will bolster
the security of your SSO environment.

• Implement MFA and PoLP: Tried-and-true security
measures such as MFA and PoLP are important in
making any access management method secure.
Both of these mitigate the risk of unauthorized access,
even if primary passwords are compromised.

General Best Practices for AWS Access

Regardless of which access model you end up choosing,
there are a few general best practices that apply in all cases.

Monitor and Audit User Access Regularly

Have robust monitoring and auditing mechanisms in
place to track user access and activities within your AWS
environment. Regularly reviewing access logs and audit
trails can help you detect suspicious activity early.

You may consider setting up automated alarms that fire
when you detect repeated unauthorized access attempts.

Consider Implementing Time-based Access Control

Implement time-based access control policies to restrict
user access to AWS resources. For instance, you might have
a policy set up to restrict access to sensitive resources

during non-business hours, except for select folks
who are on-call and need access to them.

Enable User Activity Notifications (or Audit Trail)

Enable AWS CloudTrail to capture user activity logs and API
calls. CloudTrail provides a detailed audit trail of events,

allowing you to monitor and review user actions
and changes to your AWS infrastructure in real-time.

Regularly Review Active Accounts to Ensure Security and Reduce Costs

Conduct periodic reviews of active AWS accounts to ensure
that only authorized users have access. Your organization
should define clear processes for deactivating or removing

accounts for employees who no longer require AWS
access to minimize security risks and control costs.

https://aws.amazon.com/cloudtrail/

Conclusion

In this article, we covered four methods to control
and secure user access to AWS resources. We started
by understanding the fundamental concepts of AWS
access control by exploring the most straightforward
model provided by AWS IAM. From there, we explored the
advantages and disadvantages of using different methods,
including account-level SSO, organization-level SSO,
and JIT authorization with an IdP.

Overall, local IAM users offer granular controls and more
flexibility but come with more administrative overhead.
On the other hand, the SSO-based methods provide
centralized management and streamlined user experiences

at the cost of additional setup complexity and a hard
dependency on external IdPs. To effectively manage access
to AWS resources, your organization must carefully select
the appropriate access management method that best
aligns with your security needs and user workflows.

If you need a reliable identity security solution, consider
ConductorOne to help simplify your access management
workflows. With ConductorOne, you can effortlessly
implement JIT access control, centralize access
management, and all the security best practices
we discussed in this article, all while providing
a seamless user experience.

Want to learn more about our identity
security platform for modern workforces?

team@conductorone.com

GET A DEMO

https://www.conductorone.com/
https://www.conductorone.com
mailto:team%40conductorone.com?subject=
https://www.conductorone.com/lp/request-demo/

